Dynamic Bifurcation of the Periodic Swift-hohenberg Equation
نویسندگان
چکیده
In this paper we study the dynamic bifurcation of the SwiftHohenberg equation on a periodic cell Ω = [−L,L]. It is shown that the equations bifurcates from the trivial solution to an attractor Aλ when the control parameter λ crosses the critical value. In the odd periodic case, Aλ is homeomorphic to S 1 and consists of eight singular points and their connecting orbits. In the periodic case, Aλ is homeomorphic to S , and contains a torus and two circles which consist of singular points.
منابع مشابه
Attractor Bifurcation and Final Patterns of the N-dimensional and Generalized Swift-hohenberg Equations
In this paper I will investigate the bifurcation and asymptotic behavior of solutions of the Swift-Hohenberg equation and the generalized Swift-Hohenberg equation with the Dirichlet boundary condition on a onedimensional domain (0, L). I will also study the bifurcation and stability of patterns in the n-dimensional Swift-Hohenberg equation with the odd-periodic and periodic boundary conditions....
متن کاملDynamical Bifurcation of the One Dimensional Modified Swift-hohenberg Equation
In this paper, we study the dynamical bifurcation of the modified Swift-Hohenberg equation on a periodic interval as the system control parameter crosses through a critical number. This critical number depends on the period. We show that there happens the pitchfork bifurcation under the spatially even periodic condition. We also prove that in the general periodic condition the equation bifurcat...
متن کاملModulation Equations: Stochastic Bifurcation in Large Domains
We consider the stochastic Swift-Hohenberg equation on a large domain near its change of stability. We show that, under the appropriate scaling, its solutions can be approximated by a periodic wave, which is modulated by the solutions to a stochastic Ginzburg-Landau equation. We then proceed to show that this approximation also extends to the invariant measures of these equations.
متن کاملNormal Form for Spatial Dynamics in the Swift-hohenberg Equation
The reversible Hopf bifurcation with 1:1 resonance holds the key to the presence of spatially localized steady states in many partial differential equations on the real line. Two different techniques for computing the normal form for this bifurcation are described and applied to the Swift-Hohenberg equation with cubic/quintic and quadratic/cubic nonlinearities.
متن کاملA ug 2 01 1 Localised states in an extended Swift – Hohenberg equation
Recent work on the behaviour of localised states in pattern forming partial differential equations has focused on the traditional model Swift-Hohenberg equation which, as a result of its simplicity, has additional structure — it is variational in time and conservative in space. In this paper we investigate an extended Swift-Hohenberg equation in which non-variational and non-conservative effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012